Abstract

As the optical performance requirements of space telescopes get more stringent, the need to analyze all possible error sources early in the mission design becomes critical. One large telescope with tight performance requirements is the Large Ultraviolet / Optical / Infrared Surveyor (LUVOIR) concept. The LUVOIR concept includes a 15-meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100nm to 2.5um. Using an isolation architecture that involves no mechanical contact between the telescope and the host spacecraft structure allows for tighter performance metrics than current space-based telescopes being flown. Because of this separation, the spacecraft disturbances can be greatly reduced and disturbances on the telescope payload contribute more to the optical performance error. A portion of the optical performance error comes from the disturbances generated from the motion of the Fast Steering Mirror (FSM) on the payload. Characterizing the effects of this disturbance gives insight into the specifications on the FSM needed to achieve the tight optical performance requirements of the overall system. Through analysis of the LUVOIR finite element model and linear optical model given a range of input disturbances at the FSM, the optical performance of the telescope and recommendations for FSM specifications can be determined. The LUVOIR observatory control strategy consists of a multi-loop control architecture including the spacecraft Attitude Control System (ACS), Vibration Isolation and Precision Pointing System (VIPPS), and FSM. This paper focuses on the control loop containing the FSM disturbances and their effects on the telescope optical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.