Abstract

In this article, to accurately estimate the rare failure rates for large-scale circuits (e.g., SRAM) where process variations are modeled as truncated normal distributions in high-dimensional space, we propose a novel truncated scaled-sigma sampling (T-SSS) method. Similar to scaled-sigma sampling (SSS), T-SSS distorts the truncated normal distributions by a scaling factor, resulting in an analytical model for failure rate estimation. By drawing random samples from the distorted distribution and estimating a sequence of scaled failure rates, we can solve all unknown model coefficients and predict the original failure rate by extrapolation. The accuracy of T-SSS is further assessed by estimating its confidence interval (CI) based on resampling. Our numerical results demonstrate that the proposed T-SSS method can achieve superior accuracy over the state-of-the-art method without increasing the computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.