Abstract
The start-up of anaerobic ammonia oxidation (ANAMMOX) processes at low temperatures is quite difficult. In this study, the fast start-up (43 days) of ANAMMOX biofilm processes at 18 ± 3 °C was achieved by adding enhanced ANAMMOX granules (LT-granules) into the inoculated denitrification sludge. The results showed that the addition of LT-granules significantly reduced the duration of the three start-up phases (cell lysis phase, activity lag phase, and activity elevation phase) of reactor R2 compared with the control group R1 without LT-granules. It was demonstrated that LT-granules released high contents of N-hexanoyl-DL-homoserine lactone (C6-HSL), N-octanoyl-DL-homoserine lactone (C8-HSL), and N-3-oxohexanoyl-L-homoserine lactone (3OC6-HSL). The C6-HSL and C8-HSL from LT-granules were strongly positively correlated with the concentrations of polysaccharides (TB-PS) and proteins (TB-PN) in tightly bound extracellular polymeric substances (TB-EPS) in R2 biofilms, respectively. Thus, LT-granules promoted the release of TB-PS and TB-PN from the biofilm in R2 during activity lag and activity elevation phases, improving the biofilm adhesion performance. Furthermore, it was proved that the C6-HSL, C8-HSL, and 3OC6-HSL from LT-granules significantly stimulated the relative abundance of Candidatus Brocadia genus and the expression of functional genes hzo and hzsA in R2 biofilms during activity lag and activity elevation phases. These are the main reasons why adding LT-granules promoted the start-up of reactor R2 at 18 ± 3 °C effectively. This study is the first work to accelerate the start-up of the ANAMMOX biofilm system at the low temperature by the economical quorum sensing (QS) regulation based on endogenous N-acyl-homoserine lactone signals (AHLs) and supply a new way for the rapid start-up of ANAMMOX processes in the low-temperature environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.