Abstract

The circuit averaging technique has long been used as the basis for modeling the behavioral effects of switched-mode pulsewidth-modulated (PWM) dc–dc power converter circuits due to its simplicity and efficiency in simulation. However, circuit-averaged models struggle to capture the effects of higher order harmonics on the output waveforms. Alternatively, multiharmonic models that capture high-frequency characteristics of output waveforms are typically very complex and computationally expensive. A general, efficient, and accurate multiharmonic modeling and simulation technique for low-power on-chip PWM dc–dc converters is presented in this article. The technique is based on the large-signal averaged model of the PWM switch cell and on the Fourier series expansion of the typical converter waveforms. Its applicability range includes current-mode-controlled dc–dc converters. The method is exemplified on a buck and on a boost converter and achieves a speedup of one order of magnitude with an accuracy loss below 3% over the transistor-level simulation. The method accounts for nonideal circuitry and supports any number of harmonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.