Abstract

Abstract : The performance of workstation-class machines has experienced a dramatic increase in the recent past. Relatively inexpensive machines which offer 14 MIPS and 2 MFLOPS performance are now available, and machines with even higher performance are not far off. One important characteristic of these machines is that they rely on a small amount of high-speed cache memory for their high performance. In this paper, we consider the problem of cholesky factorization of a large sparse positive definite system of equations on a high performance workstation. We find that the major factor limiting performance is the cost of moving data between memory and the processor. We use two techniques to address this limitation; we decrease the number of memory references and we improve cache behavior to decrease the cost of each reference. When run on benchmarks from the Harwell-Boeing Sparse Matrix Collection, the resulting factorization code is almost three times as fast as SPARSPAK on a DECStation 3100. We believe that the issues brought up in this paper will play an important role in the effective use of high performance workstations on large numerical problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.