Abstract

Compressed sensing is a new paradigm for signal recovery and sampling. It states that a relatively small number of linear measurements of a sparse signal can contain most of its salient information and that the signal can be exactly reconstructed from these highly incomplete observations. The major challenge in practical applications of compressed sensing consists in providing efficient, stable and fast recovery algorithms which, in a few seconds, evaluate a good approximation of a compressible image from highly incomplete and noisy samples. In this paper, we propose to approach the compressed sensing image recovery problem using adaptive nonlinear filtering strategies in an iterative framework, and we prove the convergence of the resulting two-steps iterative scheme. The results of several numerical experiments confirm that the corresponding algorithm possesses the required properties of efficiency, stability and low computational cost and that its performance is competitive with those of the state of the art algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.