Abstract

In this paper, we present two fast sparse approximation schemes for least squares support vector machine (LS-SVM), named FSALS-SVM and PFSALS-SVM, to overcome the limitation of LS-SVM that it is not applicable to large data sets and to improve test speed. FSALS-SVM iteratively builds the decision function by adding one basis function from a kernel-based dictionary at one time. The process is terminated by using a flexible and stable epsilon insensitive stopping criterion. A probabilistic speedup scheme is employed to further improve the speed of FSALS-SVM and the resulting classifier is named PFSALS-SVM. Our algorithms are of two compelling features: low complexity and sparse solution. Experiments on benchmark data sets show that our algorithms obtain sparse classifiers at a rather low cost without sacrificing the generalization performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.