Abstract

Hashing k-mers is a common function across many bioinformatics applications and it is widely used for indexing, querying and rapid similarity search. Recently, spaced seeds, a special type of pattern that accounts for errors or mutations, are routinely used instead of k-mers. Spaced seeds allow to improve the sensitivity, with respect to k-mers, in many applications, however the hashing of spaced seeds increases substantially the computational time. Hence, the ability to speed up hashing operations of spaced seeds would have a major impact in the field, making spaced seed applications not only accurate, but also faster and more efficient. In this paper we address the problem of efficient spaced seed hashing. The proposed algorithm exploits the similarity of adjacent spaced seed hash values in an input sequence in order to efficiently compute the next hash. We report a series of experiments on NGS reads hashing using several spaced seeds. In the experiments, our algorithm can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.6x to 5.3x, depending on the structure of the spaced seed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.