Abstract

A factorisation method is described for the fast numerical solution of constant tridiagonal Toeplitz linear systems which occur repeatedly in the solution of the implicit finite difference equations derived from linear first order hyperbolic equations, i.e. the Transport equation, under a variety of boundary conditions. In this paper, we show that such special linear systems can be solved efficiently by the factorisation of the coefficient matrix into two easily inverted matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.