Abstract
Sodium-ion battery technology is one of the best alternative candidates to the lithium analogue due to the low cost and the abundance of sodium. Extensive research effort is dedicated to the development of low-cost and high-performance cathodes. Here, a new sodium-deficient NASICON material Na3.41£0.59FeV(PO4)3 is synthesized by a simple sol-gel method. This new material delivers high initial discharge capacity of 170 mAh g−1 in the voltage range of 1.5-4.4 V vs. Na+/Na, originating from the intercalation of about 3 Na+ per formula unit. Furthermore, when cycled in the range of 2.0-3.8 V vs. Na+/Na, excellent rate capability and outstanding cycle life are obtained. The remarkable electrochemical performances are attributed to the small volume change (2.36 %) during the sodium extraction through a single-phase mechanism proved by in situ X-ray diffraction (XRD). Refined XRD and 23Na solid-state Nuclear Magnetic Resonance (NMR) combined with Density functional theory (DFT) calculations reveal that the sodium extraction during charge process occurs preferably from Na2 sites. Moreover, this new cathode exhibits high sodium diffusion kinetics confirmed by Galvanostatic Intermittent Titration Technique (GITT). These findings highlight the beneficial use of non-stoichiometry in electrodes for batteries and provide rational design of high-performance cathode materials for sodium-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.