Abstract

A rapid liquid chromatography–mass spectrometry method for the simultaneous quantification of caffeine, trigonelline, nicotinic acid and sucrose in coffee was developed and validated. The method involved extraction with hot water, clarification with basic lead acetate and membrane filtration, followed by chromatographic separation using a Spherisorb® S5 ODS2, 5μm chromatographic column and gradient elution with 0.3% aqueous formic acid/methanol at a flow rate of 0.2mL/min. The electrospray ionization source was operated in the negative mode to generate sucrose ions and in the positive mode to generate caffeine, trigonelline and nicotinic acid ions. Ionization suppression of all analytes was found due to matrix effect. Calibrations curves prepared in green and roasted coffee extracts were linear with r2>0.999. Roasted coffee was spiked and recoveries ranged from 93.0% to 105.1% for caffeine, from 85.2% to 116.2% for trigonelline, from 89.6% to 113.5% for nicotinic acid and from 94.1% to 109.7% for sucrose. Good repeatibilities (RSD<5%) were found for all analytes in the matrix. The limit of detection (LOD), calculated on the basis of signal-to-noise ratios of 3:1, was 11.9, 36.4, 18.5 and 5.0ng/mL for caffeine, trigonelline, nicotinic acid and sucrose, respectively. Analysis of 11 coffee samples (regular or decaffeinated green, ground roasted and instant) gave results in agreement with the literature. The method showed to be suitable for different types of coffee available in the market thus appearing as a fast and reliable alternative method to be used for routine coffee analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.