Abstract

Betti numbers are topological invariants that count the number of holes of each dimension in a space. Cubical complexes are a class of CW complex whose cells are cubes of different dimensions such as points, segments, squares, cubes, etc. They are particularly useful for modeling structured data such as binary volumes. We introduce a fast and simple method for computing the Betti numbers of a three-dimensional cubical complex that takes advantage on its regular structure, which is not possible with other types of CW complexes such as simplicial or polyhedral complexes. This algorithm is also restricted to three-dimensional spaces since it exploits the Euler-Poincare formula and the Alexander duality in order to avoid any matrix manipulation. The method runs in linear time on a single core CPU. Moreover, the regular cubical structure allows us to obtain an efficient implementation for a multi-core architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.