Abstract

We propose a fast and accurate signal quality monitoring scheme that uses convolutional neural networks for error vector magnitude (EVM) estimation in coherent optical communications. We build a regression model to extract EVM information from complex signal constellation diagrams using a small number of received symbols. For the additive-white-Gaussian-noise-impaired channel, the proposed EVM estimation scheme shows a normalized mean absolute estimation error of 3.7% for quadrature phase-shift keying, 2.2% for 16-ary quadrature amplitude modulation (16QAM), and 1.1% for 64QAM signals, requiring only 100 symbols per constellation cluster in each observation period. Therefore, it can be used as a low-complexity alternative to conventional bit-error-rate estimation, enabling solutions for intelligent optical performance monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.