Abstract

Multi-view subspace clustering is an important topic in cluster analysis. Its aim is to utilize the complementary information conveyed by multiple views of objects to be clustered. Recently, view-shared anchor learning based multi-view clustering methods have been developed to speed up the learning of common data representation. Although widely applied to large-scale scenarios, most of the existing approaches are still faced with two limitations. First, they do not pay sufficient consideration on the negative impact caused by certain noisy views with unclear clustering structures. Second, many of them only focus on the multi-view consistency, yet are incapable of capturing the cross-view diversity. As a result, the learned complementary features may be inaccurate and adversely affect clustering performance. To solve these two challenging issues, we propose a Fast Self-guided Multi-view Subspace Clustering (FSMSC) algorithm which skillfully integrates the view-shared anchor learning and global-guided-local self-guidance learning into a unified model. Such an integration is inspired by the observation that the view with clean clustering structures will play a more crucial role in grouping the clusters when the features of all views are concatenated. Specifically, we first learn a locally-consistent data representation shared by all views in the local learning module, then we learn a globally-discriminative data representation from multi-view concatenated features in the global learning module. Afterwards, a feature selection matrix constrained by the l2,1 -norm is designed to construct a guidance from global learning to local learning. In this way, the multi-view consistent and diverse information can be simultaneously utilized and the negative impact caused by noisy views can be overcame to some extent. Extensive experiments on different datasets demonstrate the effectiveness of our proposed fast self-guided learning model, and its promising performance compared to both, the state-of-the-art non-deep and deep multi-view clustering algorithms. The code of this paper is available at https://github.com/chenzhe207/FSMSC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.