Abstract

This article proposes a robust self-triggered model predictive control (MPC) algorithm for a class of constrained linear systems subject to bounded additive disturbances, in which the intersampling time is determined by a fast convergence self-triggered mechanism. The main idea of the self-triggered mechanism is to select a sampling interval so that a rapid decrease in the predicted costs associated with optimal predicted control inputs is guaranteed. This allows for a reduction in the required computation without compromising performance. By using a constraint tightening technique and exploring the nature of the open-loop control between sampling instants, a set of minimally conservative constraints is imposed on nominal states to ensure robust constraint satisfaction. A multistep open-loop MPC optimization problem is formulated, which ensures recursive feasibility for all possible realizations of the disturbance. The closed-loop system is guaranteed to satisfy a mean-square stability condition. To further reduce the computational load, when states reach a predetermined neighborhood of the origin, the control law of the robust self-triggered MPC algorithm switches to a self-triggered local controller. A compact set in the state space is shown to be robustly asymptotically stabilized. Numerical comparisons are provided to demonstrate the effectiveness of the proposed strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.