Abstract

As the amount of ground-penetrating radar (GPR) data increases significantly with the high demands of nondestructive detection methods under urban roads, a method suitable for time-lapse data dynamic monitoring should be developed to quickly identify targets on GPR profiles and compare time-lapse datasets. This study conducted a field experiment aiming to monitor one backfill pit using three-dimensional GPR (3D GPR), and the time-lapse data collected over four months were used to train U-Net, a fast neural network based on convolutional neural networks (CNNs). Consequently, a trained network model that could effectively segment the backfill pit from inline profiles was obtained, whose Intersection over Union (IoU) was 0.83 on the test dataset. Moreover, segmentation masks were compared, demonstrating that a change in the southwest side of the backfill pit may exist. The results demonstrate the potential of machine learning algorithms in time-lapse 3D GPR data segmentation and dynamic monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.