Abstract
Networked information systems require strong security guarantees because of the new threats that they face. Various forms of encryption have been proposed to deal with this problem. In a database system, there are often two contradictory goals: security of the encryption and fast performance of queries. There have been a number of proposals of database encryption schemes to facilitate queries on encrypted columns. Order-preserving encryption techniques are well-suited for databases since they support a simple, and efficient way to build indices. However, as we will show, they are insecure under straightforward attack scenarios. We propose a new light-weight database encryption scheme (called FCE) for column stores in data warehouses with trusted servers. The low decryption overhead of FCE makes comparisons of ciphertexts and hence indexing operations very fast. Since it is hard to use classical security definitions in cryptography to prove the security of any existing symmetric encryption scheme, we propose a relaxed measure of security, called INFO-CPA-DB. INFO-CPA-DB is based on a well-established security definition in cryptography and relaxes it using information theoretic concepts. Using INFO-CPA-DB, we give strong evidence that FCE is as secure as any underlying block cipher (yet more efficient than using the block cipher itself). Using the same security measure we also show the inherent insecurity of any order preserving encryption scheme under straightforward attack scenarios. We discuss indexing techniques based on FCE as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.