Abstract

Maximal information coefficient (MIC) is an indicator to explore the correlation between pairwise variables in large data sets, and the accuracy of MIC has an impact on the measure of dependence for each pair. To improve the equitability in an acceptable run-time, in this paper, an intelligent MIC (iMIC) is proposed for optimizing the partition on the y-axis to approximate the MIC with good accuracy. It is an iterative algorithm on quadratic optimization to generate a better characteristic matrix. During the process, the iMIC can quickly find out the local optimal value while using a lower number of iterations. It produces results that are close to the true MIC values by searching just n times, rather than n 2 computations required for the previous method. In the compared experiments of 169 indexes about 202 countries from World Health Organization (WHO) data set, the proposed algorithm offers a better solution coupled with a reasonable run-time for MIC, and good performance search for the extreme values in fewer iterations. The iMIC develops the equitability keeping the satisfied accuracy with fast computational speed, potentially benefitting the relationship exploration in big data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.