Abstract

This study investigated the capacity of fast-scan (400 °C min−1) against conventional (10 °C min−1) differential scanning calorimetry (DSC) techniques to track crystallization phenomenon in tolbutamide–polyethylene glycol 3000 composites prepared by hot melt method (mass ratios 1:1, 1:5, and 1:9) and stored at 25 and 75 % relative humidities. Drug crystallization in composites was indicated by X-ray diffractometry (XRD) and scanning electron microscopy characterization over 40 days storage. With reference to XRD as gold measurement standard, fast-scan DSC could not map the crystallization events of composites (Pearson correlation: fast-scan DSC peak temperature and enthalpy versus XRD peak intensity and area, p > 0.05). Conventional DSC was able to indicate marked drug crystallization through an increase in endothermic enthalpy value of peaks at high temperature regimes between 250 and 360 °C due to formation of high melting point crystal form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call