Abstract

Metabolomics has emerged as a powerful tool for addressing biological questions. Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used for metabolic characterization, including targeted and untargeted approaches. Despite recent innovations, a crucial aspect of this technique is the sample preparation for accurate data analyses. In this protocol, we present a robust and adaptable workflow for metabolic analyses of mammalian cells from adherent cell cultures, which is particularly suited for qualitative and quantitative central metabolite characterization by LC-MS. Each sample consists of 600,000 mammalian cells grown on cover glasses, allowing for fast and complete transfer of the cells for metabolite extraction or medium exchange, e.g., for labeling experiments. The sampling procedure includes a fast and efficient washing step in liquid flow in water, which reduces cross-contamination and matrix effects while minimizing perturbation of the metabolic steady state of the cells; it is followed by quenching cell metabolism. The latter is achieved by using a -20 °C cold methanol acetonitrile mixture acidified with formic acid, followed by freeze drying, metabolite extraction and LC-MS. The protocol requires 2 s for cell sampling until quenching, and the entire protocol takes a total of 1.5 h per sample when the provided nanoscale LC-MS method is applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.