Abstract
Using the molecular dynamics simulations with separate thermostats for translational and rotational degrees of freedom, we investigate the effects of water's rotational motion on the interaction among Lennard-Jones solutes. The situation with rotational temperature higher than the translational one (TR > TT) is mimicking the effects of microwaves on model solutions. Molecular dynamics simulations suggest that solutions of Lennard-Jones solutes become increasingly more structured with the rise in TR, while keeping the TT constant. This is evidenced by an increase of the first and the second peak of the solute-solute radial distribution function. In addition, the first peak moves toward slightly larger distances; the effect seems to be caused by the destabilization of water molecules in the first hydration shell around hydrophobic solutes. More evidence of strong effects of the rotationally excited water is provided by the simulations of short hydrophobic polymers, which upon an increase in TR assume more compact conformations. In these simulations, we see the re-distribution of water molecules, which escape from hydrophobic "pockets" to better solvate the solvent exposed monomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.