Abstract
One of the unsolved problems in prion diseases relates to the physiological function of cellular prion protein (PrP), of which a misfolded isoform is the major component of the transmissible spongiform encephalopathies agent. Knowledge of the PrP-binding molecules may help in elucidating its role and understanding the pathological events underlying prion diseases. Because nucleic acids are known to bind PrP, we attempted to identify the preferred RNA sequences that bind to the ovine recombinant PrP. An in vitro selection approach (SELEX) was applied to a pool of 80-nucleotide(nt)-long RNAs containing a randomised 40-nt central region. The most frequently isolated aptamer, RM312, was also the best ligand (20 nM KD value), according to both surface plasmon resonance and filter binding assays. The fast rates of association and dissociation of RM312 with immobilized PrP, which are reminiscent of biologically relevant interactions, could point to a physiological function of PrP towards cellular nucleic acids. The minimal sequence that we found necessary for binding of RM312 to PrP presents a striking similarity with one previously described PrP aptamer of comparable affinity. In addition, we here identify the two lysine clusters contained in the N-terminal part of PrP as its main nucleic-acid binding sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.