Abstract

Zinc oxide (ZnO)-based ultraviolet (UV) detector has been fabricated and its photoresponse is studied in an out-of-plane contact configuration. Porous anodic aluminum oxide (AAO) template-based deposition method is adopted for the aligned and well-separated growth of ZnO nanorods (NRs). Through-hole in silicon (Si) by modified metal assisted chemical etching is used as a window for the electrochemical deposition of ZnO in the template and for out-of-plane electrical contacts during device analysis. The fabricated photodetector shows a fast response under UV (365 nm) light illumination, with rise and decay times of 31 ± 2 ms and 85 ± 3 ms, respectively. This fast response is analysed in terms of vertical growth and the waveguide nature of ZnO NRs embedded in anodic alumina. These results are further supported by a simulation comparing the electric field distribution of ZnO NR embedded in AAO with that of bare ZnO NR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call