Abstract
A metal–semiconductor–metal photoconductive detector was fabricated on c-axis preferred oriented Ga-doped ZnO (ZnO:Ga) thin film prepared on quartz by radio-frequency magnetron sputtering. With a 10 V bias, a responsivity of about 2.6 A/W at 370 nm was obtained in the ultraviolet region. The photocurrent increases linearly with incident power density for more than two orders of magnitude. The transient response measurement revealed photoresponse with a rise time of 10 ns and a fall time of 960 ns, respectively. The results are much faster than those reported in photoconductive detectors based on unintentionally doped n-type ZnO films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.