Abstract

Experiments are performed using a fast-response temperature-sensitive-paint (TSP) technique to measure the heat-flux distribution on a slender cone in a hypersonic shock tunnel under both laminar and transitional conditions. The millisecond-order test duration together with the self-luminosity of shock layers place stringent conditions on the choice of TSP luminophore and the TSP-layer thickness that can be employed. The luminosity and dimming from particulates in the free-stream cause additional problems in interpreting the obtained intensity profiles. Nevertheless, favorable agreement with thermocouple-based measurements show that it is possible to derive quantitatively accurate heat-flux distributions with the TSP technique for temperature rises of up to approximately 40 K above room temperature. The technique accuracy is adversely affected at higher temperatures, which is thought to result from non-constant thermal properties of the insulating base layer. At high unit Reynolds number conditions, time-resolved heat-flux distributions show large-scale unsteadiness in the boundary-layer transition location and reveal transient streamwise streaks developing in the transitional region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call