Abstract

Typically, hollow-core fiber (HCF)-based laser gas sensing systems use a single monolithic fiber as a gas cell. This results in a tradeoff between sensitivity which requires long optical fiber and sensor’s response time, that grows with the fiber length. Here we present a simple approach to solve this issue with new all-fiber modular gas cell design. The setup uses modified fiber mating sleeves to connect multiple HCFs in series, with optical loss of typically from 2 to 3 dB per connection. By injecting the sample gas at every second HCF-to-HCF connection, all HCF segments are filled simultaneously. We demonstrated the setups with two and four HCF segments, each with a length of 1.35 m. Laser absorption spectroscopy of methane near 1687 nm is used for setup characterization. Using the inlet pressure of 2 bar, the gas filling time is reduced over 13 times, from 77.9 s for a monolithic fiber, to only 5.9 s for the four-segment design (total HCF length of 5.4 m). With the pressure increased to 3 bar, the response time is further decreased to 3.6 s. Pressure buildup and drawdown times in the HCF were also examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call