Abstract

SnO2 nanoparticle architectures were successfully synthesized using a sol-gel method and developed for acetone gas detection. The morphology and structure of the particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The SnO2 nanoparticle architectures were configured as high-performance sensors to detect acetone and showed a very fast response time (<1 s), a short recovery time (10 s), good repeatability and high selectivity at a relatively low working temperature. Thus, SnO2 nanoparticles should be promising candidates for designing and fabricating acetone gas sensors with good gas sensing performance. The possible gas sensing mechanism is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.