Abstract

Graphene oxide is a unique material that can be used for adsorption of radioactive waste because it contains various function groups such as epoxide, carbonyl, carboxyl and hydroxyl in addition to its high specific surface area. The as-prepared GO and the modified one (GO-chitosan composite) have been prepared then characterized and used as adsorbent for radioactive metal ions [Strontium, Sr(II)]. The results showed that the prepared materials are efficient adsorbents for removal of Sr(II) from water. The effect of contact time, pH and temperature on adsorption have been studied. The results indicated that the maximum adsorption capacity was about 140 and 179.6 mg/g for GO and GO-chitosan composite respectively. It was found that pH ~ 6 and temperature ~ 40 °C are the best condition for removal of Sr(II) from water. Two isotherm models (Langmuir and Freundlich) and three kinetic models (Pseudo-first-order, pseudo-second-order, and intra-particle particle diffusion model) have been applied. Based on the calculated isotherm parameters (R2), it can be concluded that Langmuir model fits the adsorption equilibrium data better than Freundlich model, the results also indicated that the second order kinetic model is the best representative for adsorption of Sr(II) on GO, Chitosan and GO-Chitosan. Based on the regressions of intraparticle diffusion model, experimental data showed that the adsorption process involved intraparticle diffusion, which was not the only rate-controlling step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call