Abstract

The mechanics of the tumor microenvironment (TME) significantly impact disease progression and the efficacy of anti-cancer therapeutics. While it is recognized that advanced in vitro cancer models will benefit cancer research, none of the current engineered extracellular matrices (ECM) adequately recapitulate the highly dynamic TME. Through integrating reversible boronate-ester bonding and dithiolane ring-opening polymerization, we fabricated synthetic polymer hydrogels with tumor-mimetic fast relaxation and reversibly tunable elastic moduli. Importantly, the crosslinking and dynamic stiffening of matrix mechanics were achieved in the absence of a photoinitiator, often the source of cytotoxicity. Central to this strategy was Poly(PEGA-co-LAA-co-AAPBA) (PELA), a highly defined polymer synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. PELA contains dithiolane for initiator-free gel crosslinking, stiffening, and softening, as well as boronic acid for complexation with diol-containing polymers to give rise to tunable viscoelasticity. PELA hydrogels were highly cytocompatible for dynamic culture of patient-derived pancreatic cancer cells. It was found that the fast-relaxing matrix induced mesenchymal phenotype of cancer cells, and dynamic matrix stiffening restricted tumor spheroid growth. Moreover, this new dynamic viscoelastic hydrogel system permitted sequential stiffening and softening to mimic the physical changes of TME.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call