Abstract

Using feedback signals from the environment, a reinforcement learning (RL) system typically discovers action policies that recommend actions effective to the states based on a Q-value function. However, uncertainties over the estimation of the Q-values can delay the convergence of RL. For fast RL convergence by accounting for such uncertainties, this paper proposes several enhancements to the estimation and learning of the Q-value using a self-organizing neural network. Specifically, a temporal difference method known as Q-learning is complemented by a Q-value Polarization procedure, which contrasts the Q-values using feedback signals on the effect of the recommended actions. The polarized Q-values are then learned by the self-organizing neural network using a Bi-directional Template Learning procedure. Furthermore, the polarized Q-values are in turn used to adapt the reward vigilance of the ART-based self-organizing neural network using a Bi-directional Adaptation procedure. The efficacy of the resultant system called Fast Learning (FL) FALCON is illustrated using two single-task problem domains with large MDPs. The experiment results from these problem domains unanimously show FL-FALCON converging faster than the compared approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.