Abstract

Regular expression (RE) matching is a core component of deep packet inspection in modern networking and security devices. In this paper, we propose the first hardware-based RE matching approach that uses ternary content addressable memory (TCAM), which is available as off-the-shelf chips and has been widely deployed in modern networking devices for tasks such as packet classification. We propose three novel techniques to reduce TCAM space and improve RE matching speed: transition sharing, table consolidation, and variable striding. We tested our techniques on eight real-world RE sets, and our results show that small TCAMs can be used to store large deterministic finite automata (DFAs) and achieve potentially high RE matching throughput. For space, we can store each of the corresponding eight DFAs with 25 000 states in a 0.59-Mb TCAM chip. Using a different TCAM encoding scheme that facilitates processing multiple characters per transition, we can achieve potential RE matching throughput of 10-19 Gb/s for each of the eight DFAs using only a single 2.36-Mb TCAM chip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.