Abstract
Fast transversal filter (FTF) implementations of recursive-least-squares (RLS) adaptive-filtering algorithms are presented in this paper. Substantial improvements in transient behavior in comparison to stochastic-gradient or LMS adaptive algorithms are efficiently achieved by the presented algorithms. The true, not approximate, solution of the RLS problem is always obtained by the FTF algorithms even during the critical initialization period (first N iterations) of the adaptive filter. This true solution is recursively calculated at a relatively modest increase in computational requirements in comparison to stochastic-gradient algorithms (factor of 1.6 to 3.5, depending upon application). Additionally, the fast transversal filter algorithms are shown to offer substantial reductions in computational requirements relative to existing, fast-RLS algorithms, such as the fast Kalman algorithms of Morf, Ljung, and Falconer (1976) and the fast ladder (lattice) algorithms of Morf and Lee (1977-1981). They are further shown to attain (steady-state unnormalized), or improve upon (first N initialization steps), the very low computational requirements of the efficient RLS solutions of Carayannis, Manolakis, and Kalouptsidis (1983). Finally, several efficient procedures are presented by which to ensure the numerical Stability of the transversal-filter algorithms, including the incorporation of soft-constraints into the performance criteria, internal bounding and rescuing procedures, and dynamic-range-increasing, square-root (normalized) variations of the transversal filters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Acoustics, Speech, and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.