Abstract

Subspace algorithms based on higher-order cumulants were developed to achieve high-resolution separation in non-Gaussian processes. However, singular value decomposition (SVD) of a huge matrix is an unavoidable step of these algorithms. The memory space and running time required by the decomposition are super-linear with respect to the size of the matrix, which is prohibitive in terms of practical applications. Thus, in this paper, a fast raypath separation algorithm based on low-rank matrix approximation is proposed in a shallow-water waveguide. The experimental results illustrate that the proposed algorithm dramatically reduces the consumption of time and space, with arbitrarily small error, compared to conventional higher-order cumulant-based algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.