Abstract

An efficient algorithm for computing radix-3/9 discrete Hartley transforms (DHTs) is presented. It is shown that the radix-3/9 fast Hartley transform (FHT) algorithm reduces the number of multiplications required by a radix-3 FHT algorithm for nearly 50%. For the computation of real-valued discrete Fourier transforms (DFTs) with sequence lengths that are powers of 3, it is shown that the radix-3/9 FHT algorithm reduces the number of multiplications by 16.2% over the fastest real-valued radix-3/9 fast Fourier transform (FFT) algorithm.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.