Abstract

Abstract The recent discovery of a Galactic fast radio burst (FRB) occurring simultaneously with an X-ray burst (XRB) from the Galactic magnetar SGR J1935+2154 implies that at least some FRBs arise from magnetar activities. We propose that FRBs are triggered by crust fracturing of magnetars, with the burst event rate depending on the magnetic field strength in the crust. Since the crust-fracturing rate is relatively higher in polar regions, FRBs are more likely to be triggered near the directions of multipolar magnetic poles. Crust fracturing produces Alfvén waves, forming a charge-starved region in the magnetosphere and leading to nonstationary pair plasma discharges. An FRB is produced by coherent plasma radiation due to nonuniform pair production across magnetic field lines. Meanwhile, the FRB-associated XRB is produced by the rapid relaxation of the external magnetic field lines. In this picture, the sharp-peak hard X-ray component in association with FRB 200428 is from a region between adjacent trapped fireballs, and its spectrum with a high cutoff energy is attributed to resonant Compton scattering. The persistent X-ray emission is from a hot spot heated by the magnetospheric activities, and its temperature evolution is dominated by magnetar surface cooling. Within this picture, magnetars with stronger fields tend to produce brighter and more frequent repeated bursts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.