Abstract

Abstract Quasi-periodic oscillations inferred during rare magnetar giant flare tails were initially interpreted as torsional oscillations of the neutron star (NS) crust, and have been more recently described as global core+crust perturbations. Similar frequencies are also present in high-signal-to-noise magnetar short bursts. In magnetars, disturbances of the field are strongly coupled to the NS crust regardless of the triggering mechanism of short bursts. For low-altitude magnetospheric magnetar models of fast radio bursts (FRBs) associated with magnetar short bursts, such as the low-twist model, crustal oscillations may be associated with additional radio bursts in the encompassing short burst event (as recently suggested for SGR 1935+2154). Given the large extragalactic volume probed by wide-field radio transient facilities, this offers the prospect of studying NS crusts leveraging samples far more numerous than galactic high-energy magnetar bursts by studying statistics of subburst structure or clustered trains of FRBs. We explore the prospects for distinguishing NS equation of state models with increasingly larger future sets of FRB observations. Lower l-number eigenmodes (corresponding to FRB time intervals of ∼5–50 ms) are likely less susceptible than high-l modes to confusion by systematic effects associated with the NS crust physics, magnetic field, and damping. They may be more promising in their utility, and also may corroborate models where FRBs arise from mature magnetars. Future observational characterization of such signals can also determine whether they can be employed as cosmological “standard oscillators” to constrain redshift, or can be used to constrain the mass of FRB-producing magnetars when reliable redshifts are available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call