Abstract

An inductive energy storage pulsed power generator needs an opening switch to immediately limit the circuit current and to achieve a high inductive voltage. Quench phenomena of a superconducting wire can be applicable to the opening switch because it provides a fast resistance increase of the wire. In this study, quench characteristics of a superconducting wire were investigated using pulsed current waveforms with various peak values. It has been found that quench of the wire occurred when the current exceeded a critical value. The resistance rise rate of the wire increases with the current: peak and wire length. An inductive pulsed power generator, which used a solenoid coil of the superconducting wire as an opening switch, was constructed to demonstrate that the switch could principally work to generate pulsed voltage and power with a fast rising rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call