Abstract

ABSTRACT Pulverized coal (PC) pyrolysis is an indispensable process for coal thermal conversion and utilization. The transformation of fuel-N into fast pyrolysis is a basis for the investigation of nitrogen migration in coal combustion. In this paper, a wire mesh reactor was used to study the initial decomposition processes and to reveal the final pyrolysis yield and composition distribution during the fast pyrolysis process. Furthermore, the initial pyrolysis characteristics of PC with different ash contents were presented and compared. The results showed that both Huangling coal (with higher volatile) and Wuhai coal (with higher ash content) showed a similar trend, and the pyrolysis ratio increased with the increased pyrolysis final temperature. The pyrolysis ratio at the high heating rate was estimated to exceed that at the low heating rate by 2%–10%. With the temperature increased, the char-N yield decreased first and then tended to be stable, and most of nitrogen remained in the char (more than 55%). An increase in heating rate made the pyrolysis zone to shift toward higher temperature, and it enhanced the yields of volatile and tar as well as the proportion of tar in volatile. Besides, the heating rate increased from 10°C·s−1 to 1500°C·s−1, the yield of tar-N increased from 4% to 14% and gas-N decreased from 28% to 19%. Overall, NH3 yielded was higher than HCN, which became more apparent at high heating rates. The content of the N-6 was positively related to the coal pyrolysis ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.