Abstract

Direct-coupling analysis is a group of methods to harvest information about coevolving residues in a protein family by learning a generative model in an exponential family from data. In protein families of realistic size, this learning can only be done approximately, and there is a trade-off between inference precision and computational speed. We here show that an earlier introduced l2-regularized pseudolikelihood maximization method called plmDCA can be modified as to be easily parallelizable, as well as inherently faster on a single processor, at negligible difference in accuracy. We test the new incarnation of the method on 143 protein family/structure-pairs from the Protein Families database (PFAM), one of the larger tests of this class of algorithms to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.