Abstract

The unceasing increase of data quantity severely limits the wide application of mature classification algorithms due to the unacceptable execution time and the insufficient memory. How to fast incrementally obtain high decision reference set and adapt to incremental data environment is urgently needed in incremental environments, large dataset, etc. This paper proposes a novel prototype selection algorithm by integrating the strategies between condensing method and editing method. To an unlearned pattern, this algorithm extends the references scope from its single nearest neighbour to its k nearest neighbourhood that can expand the judgment information to obtain its detailed neighbour relationship. Then a pattern was determined whether it is a prototype using its neighbour relationship and classification boundary asymptotically strategy. To maintain the higher reference set, this algorithm periodically updates those prototypes that locates in the non-boundary zone or is long-time unlearned. The empirical study shows that this algorithm obtains the smaller and higher boundary prototypes without decreasing classification accuracy and reduction rate than the compared algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.