Abstract
ABSTRACT We present performance-guaranteed approximation algorithms for the protein folding problem in the hydrophobic–hydrophilic model (Dill, 1985). Our algorithms are the first approximation algorithms in the literature with guaranteed performance for this model (Dill, 1994). The hydrophobic–hydrophilic model abstracts the dominant force of protein folding: the hydrophobic interaction. The protein is modeled as a chain of amino acids of length n that are of two types; H (hydrophobic, i.e., nonpolar) and P (hydrophilic, i.e., polar). Although this model is a simplification of more complex protein folding models, the protein folding structure prediction problem is notoriously difficult for this model. Our algorithms have linear (3n) or quadratic time and achieve a three-dimensional protein conformation that has a guaranteed free energy no worse than three-eighths of optimal. This result answers the open problem of Ngo et al. (1994) about the possible existence of an efficient approximation algorithm with...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.