Abstract

Abstract. High resolution consumer cameras on Unmanned Aerial Vehicles (UAVs) allow for cheap acquisition of highly detailed images, e.g., of urban regions. Via image registration by means of Structure from Motion (SfM) and Multi View Stereo (MVS) the automatic generation of huge amounts of 3D points with a relative accuracy in the centimeter range is possible. Applications such as semantic classification have a need for accurate 3D point clouds, but do not benefit from an extremely high resolution/density. In this paper, we, therefore, propose a fast fusion of high resolution 3D point clouds based on occupancy grids. The result is used for semantic classification. In contrast to state-of-the-art classification methods, we accept a certain percentage of outliers, arguing that they can be considered in the classification process when a per point belief is determined in the fusion process. To this end, we employ an octree-based fusion which allows for the derivation of outlier probabilities. The probabilities give a belief for every 3D point, which is essential for the semantic classification to consider measurement noise. For an example point cloud with half a billion 3D points (cf. Figure 1), we show that our method can reduce runtime as well as improve classification accuracy and offers high scalability for large datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.