Abstract

We investigate methods for pricing American options under the variance gamma model. The variance gamma process is a pure jump process which is constructed by replacing the calendar time by the gamma time in a Brownian motion with drift, which makes it a time-changed Brownian motion. In general, the finite difference method and the simulation method can be used for pricing under this model, but their speed is not satisfactory. So there is a need for fast but accurate approximation methods. In the case of Black-Merton-Scholes model, there are fast approximation methods, but they cannot be utilized for the variance gamma model. We develop a new fast method inspired by the quadratic approximation method, while reducing the error by making use of a machine learning technique on pre-calculated quantities. We compare the performance of our proposed method with those of the existing methods and show that this method is efficient and accurate for practical use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.