Abstract

The directional pattern of sound waves scattered from an object insonified by a plane wave can be efficiently predicted using the Fourier diffraction theorem (FDT). This is achieved by sampling a circle in the discrete Fourier transform of the object/medium distribution. However, the FDT-based approach under the first-order Born approximation is only applicable to weak scattering. To improve the prediction accuracy and expand the method’s scope of applications, we introduce a second-order correction term to the solution, which is obtained by taking the first-order scattered waves as secondary incident sources, and calculate the “scattering” in the same way as in the first-order FDT-based approach. Adding the resulting correction term to the directional pattern based on the first-order Born approximation, the second-order prediction is obtained. Numerical results show that the proposed method can provide improved directional patterns of the scattered waves, and the range of applicability is significantly expanded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call