Abstract
In recent works several authors have proposed the use of precise boundary conditions (BCs) for blurring models, and they proved that the resulting choice (Neumann or reflective, antireflective) leads to fast algorithms both for deblurring and for detecting the regularization parameters in presence of noise. When considering a symmetric point spread function, the crucial fact is that such BCs are related to fast trigonometric transforms. In this paper we combine the use of precise BCs with the total variation (TV) approach in order to preserve the jumps of the given signal (edges of the given image) as much as possible. We consider a classic fixed point method with a preconditioned Krylov method (usually the conjugate gradient method) for the inner iteration. Based on fast trigonometric transforms, we propose some preconditioning strategies that are suitable for reflective and antireflective BCs. A theoretical analysis motivates the choice of our preconditioners, and an extensive numerical experimentation is reported and critically discussed. Numerical tests show that the TV regularization with antireflective BCs implies not only a reduced analytical error, but also a lower computational cost of the whole restoration procedure over the other BCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.