Abstract
We obtain randomized algorithms for factoring degree $n$ univariate polynomials over $\mathbb{F}_q$ requiring $O(n^{1.5 + o(1)}\,{\rm log}^{1+o(1)} q+ n^{1 + o(1)}\,{\rm log}^{2+o(1)} q)$ bit operations. When ${\rm log}\, q < n$, this is asymptotically faster than the best previous algorithms [J. von zur Gathen and V. Shoup, Comput. Complexity, 2 (1992), pp. 187-224; E. Kaltofen and V. Shoup, Math. Comp., 67 (1998), pp. 1179-1197]; for ${\rm log}\, q \ge n$, it matches the asymptotic running time of the best known algorithms. The improvements come from new algorithms for modular composition of degree $n$ univariate polynomials, which is the asymptotic bottleneck in fast algorithms for factoring polynomials over finite fields. The best previous algorithms for modular composition use $O(n^{(\omega + 1)/2})$ field operations, where $\omega$ is the exponent of matrix multiplication [R. P. Brent and H. T. Kung, J. Assoc. Comput. Mach., 25 (1978), pp. 581-595], with a slight improvement in the exponent achieved by employing fast rectangular matrix multiplication [X. Huang and V. Y. Pan, J. Complexity, 14 (1998), pp. 257-299]. We show that modular composition and multipoint evaluation of multivariate polynomials are essentially equivalent, in the sense that an algorithm for one achieving exponent $\alpha$ implies an algorithm for the other with exponent $\alpha + o(1)$, and vice versa. We then give two new algorithms that solve the problem near-optimally: an algebraic algorithm for fields of characteristic at most $n^{o(1)}$, and a nonalgebraic algorithm that works in arbitrary characteristic. The latter algorithm works by lifting to characteristic 0, applying a small number of rounds of multimodular reduction, and finishing with a small number of multidimensional FFTs. The final evaluations are reconstructed using the Chinese remainder theorem. As a bonus, this algorithm produces a very efficient data structure supporting polynomial evaluation queries, which is of independent interest. Our algorithms use techniques that are commonly employed in practice, in contrast to all previous subquadratic algorithms for these problems, which relied on fast matrix multiplication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.