Abstract
In this article, an alternative approach to high switching speed organic rectifiers based on a semiconducting polymer, poly(dialkylquarterthiophene) (PQT-12) is demonstrated. It is shown that by using a linear array of polymer nanowires with intentionally broken symmetry, nanodevices displaying diode-like I/ V characteristics can be obtained. The so-called self-switching devices (SSDs) are single-layered planar structures that can be easily fabricated in a single step of nanolithography. In addition, since SSD arrays possess substantially lower parasitic capacitance between contacts than conventional vertical organic diodes (VODs) and organic thin-film transistors (OTFTs), very high switching speeds may be achieved. As the result of this combination of favourable properties, we have demonstrated polymer nanorectifiers operating with frequencies well in excess of 1 MHz that have the potential to pave the way towards ultra low-cost radio frequency identification (RFID) tags.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.