Abstract

Phase aberration is one of the most important factors that limit improvement to lateral resolution of ultrasound imaging system. In this paper we propose a computationally efficient method to correct the phase aberration problem arises from the subcutaneous fat layer. The method is based on the determination of thickness of the fat layer and the velocity in it to calculate the focusing delay perfectly. The thickness and velocity can be determined manually by the user through a qualitative assessment or automatically using a quantitative measure as an objective function. Minimizing the value of the entropy was selected as the cost function. The effect of the fat layer thickness and velocity were simulated as a time delays added to the radio frequency (RF) data. Experimental studies addressing that the entropy can be used to accurately determine the thickness and velocity of the fat layer depending on the selected region of interest (ROI). Images of a six pins phantom were reconstructed by two method in frequency domain by Fourier transform and in time domain, and different images were reconstructed using different aperture size . We drive the evaluation of results simulation in image reconstructed by two method and evaluation phase aberration correction when we used best thickness only and when we used optimum velocity also we do it by execution time and accuracy of image using entropy cost function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.