Abstract
A large body of research has focused on theory and computation for variable selection techniques for high dimensional data. There has been substantially less work in the big "tall" data paradigm, where the number of variables may be large, but the number of observations is much larger. The orthogonalizing expectation maximization (OEM) algorithm is one approach for computation of penalized models which excels in the big tall data regime. The oem package is an efficient implementation of the OEM algorithm which provides a multitude of computation routines with a focus on big tall data, such as a function for out-of-memory computation, for large-scale parallel computation of penalized regression models. Furthermore, in this paper we propose a specialized implementation of the OEM algorithm for cross validation, dramatically reducing the computing time for cross validation over a naive implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.