Abstract

In the context of eXtended Generalized Fat Tree (XGFT) topologies, widely used in HPC and datacenter network designs, we propose a generic method, based on Integer Linear Programming (ILP), to efficiently determine optimal routes for arbitrary workloads. We propose a novel approach that combines ILP with dynamic programming, effectively reducing the time to solution. Specifically, we divide the network into smaller subdomains optimized using a custom ILP formulation that ensures global optimality of local solutions. Local solutions are then combined into an optimal global solution using dynamic programming. Finally, we demonstrate through a series of extensive benchmarks that our approach scales in practice to networks interconnecting several thousands of nodes, using a single-threaded, freely available linear programming solver on commodity hardware, with the potential for higher scalability by means of commercial, parallel solvers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.